2 research outputs found

    Implicit personalization in driving assistance: State-of-the-art and open issues

    Get PDF
    In recent decades, driving assistance systems have been evolving towards personalization for adapting to different drivers. With the consideration of driving preferences and driver characteristics, these systems become more acceptable and trustworthy. This article presents a survey on recent advances in implicit personalized driving assistance. We classify the collection of work into three main categories: 1) personalized Safe Driving Systems (SDS), 2) personalized Driver Monitoring Systems (DMS), and 3) personalized In-vehicle Information Systems (IVIS). For each category, we provide a comprehensive review of current applications and related techniques along with the discussion of industry status, benefits of personalization, application prospects, and future focal points. Both relevant driving datasets and open issues about personalized driving assistance are discussed to facilitate future research. By creating an organized categorization of the field, we hope that this survey could not only support future research and the development of new technologies for personalized driving assistance but also facilitate the application of these techniques within the driving automation community</h2

    Performance analysis of robust cooperative positioning based on GPS/UWB integration for connected autonomous vehicles

    No full text
    The accurate position is a key requirement for autonomous vehicles. Although Global Navigation Satellite Systems (GNSS) are widely used in many applications, their performance is often disturbed, particularly in urban areas. Therefore, many studies consider multi-sensor integration and cooperative positioning (CP) approaches to provide additional degrees of freedom to address the shortcomings of GNSS. However, few studies adopted real-world datasets and internode ranging outliers within CP is left untouched, leading to unexpected challenges in practical applications. To address this, we propose a Robust Cooperative Positioning (RCP) scheme that augments the GPS with the Ultra-Wideband (UWB) system. A field experiment is conducted to generate a real-world dataset to evaluate the RCP scheme. Moreover, the analysis of the collected dataset enables us to optimise a simple but effective Robust Kalman Filter (RKF) to mitigate the influence of outlier measurements and improve the robustness of the proposed solution. Finally, a simulated dataset is derived from the real-world data to comprehensively study the performance of the proposed RCP method in urban canyon scenarios. Our results demonstrate that the proposed solution can crucially improve positioning performance when the number of visible GPS satellite is limited and is robust against various adverse effects in such environments.</div
    corecore